All posts by admin

stay_tuned

Summer School & Workshop Wisla 23

The Summer School & Workshop Wisla 23 will bring together students, researchers and practitioners from all over the world to share groundbreaking insights in AI, mathematics, and computer science. The event will take place from  August 21 - September 1, 2023, and will combine lectures by experts in the field and talks by participants. These will be hybrid meetings (in-person in Gothenburg, Sweden, and online).  This year's theme is Mapping the Interdisciplinary Horizons of AI: Safety, Functional Programming, Information Geometry, and Beyond.

 

LECTURES

  • Scott Aaronson (The University of Texas at Austin, USA)
    AI Safety: Leaning Into Uninterpretability
    I'll share some thoughts about AI safety, shaped by a year's leave at OpenAI to work on the intersection of AI safety and theoretical computer science.  I'll discuss what I've worked on, including a scheme for watermarking the outputs of Large Language Models such as GPT, as well as proposals such as cryptographic backdoors and a theory of AI acceleration risk.

  • Seth Baum (Global Catastrophic Risk Institute, University of Cambridge, USA)
    Social and Philosophical Dimensions of AI Alignment
    Successful AI alignment requires three steps: (1) concept(s) for what, if anything, to align AI to; (2) design(s) for how to implement the concept(s) in one or more AI systems; and (3) the usage, by human developers of AI systems, of these design(s) instead of other, less suitable design(s). Step (1) is mainly a matter of moral philosophy; step (2) is mainly a matter of computer science; and step (3) is mainly a matter of social science and politics. My lecture(s) will cover steps (1) and (3).

  • Olle Häggström (Chalmers University of Technology, Sweden)
    AI risk and AI alignment
    The planetary dominance over other species that humanity has attained has very little to do with muscular strength and physical endurance: it is all about intelligence. This makes the present moment in history, when we are automating intelligence and handing over this crucial skill to machines, the most important ever. The research area that has become known as AI alignment deals with how to make sure that the first superintelligent machines have goals and values that are sufficiently aligned with ours and that sufficiently prioritize human flourishing. This needs to succeed, because otherwise we face existential catastrophe. In these lectures I will outline key challenges in AI alignment, what is being done to solve them, and how all this relates to the breakneck speed at which AI is presently advancing.

  • Anders Sanberg (Future of Humanity Institute, University of Oxford, UK)
    TBA
  • Patrik Jansson (Chalmers University of Technology, Sweden)
    Domain-Specific Languages of Mathematics
    The main idea behind this minicoure is to encourage the students to approach mathematical domains from a functional programming perspective. We will learn about the language Haskell; identify the main functions and types involved; introduce calculational proofs; pay attention to the syntax of mathematical  expressions; and, finally, to organize the resulting functions and types in domain-specific languages.
  • Valentin Lychagin (University of Tromsø, Norway)
    Introduction to contact geometry with applications
  • Frank Nielsen (Sony Computer Science Laboratories, Japan)
    Introduction to Information Geometry, Recent Advances, and Applications.
    Information geometry primarily studies the geometric structures, dissimilarities, and statistical invariance of a family of probability distributions called the statistical model. A regular parametric statistical model can be geometrically handled as a Riemannian manifold equipped with the Fisher metric tensor which induces the Fisher-Rao geodesic distance. This Riemannian structure on the Fisher-Rao manifold was later generalized by a dual structure based on pairs of torsion-free affine connections coupled to the Fisher metric: The α-geometry. This dual structure casts light on the close interaction between statistical estimators in inference (maximum likelihood) and parametric statistical models (exponential families obtained from the principle of maximum entropy), and brings into play a generalized Pythagorean theorem useful to prove uniqueness of information projections. We will illustrate applications of information geometry in statistics, information theory, computer vision and pattern recognition, and learning of neural networks. The second part of the minicourse will present recent advances in information geometry and its applications.
  • Dmitri Alekseevsky (University of Hradec Králové, Czech RepublicNeurogeometry of Vision and Information Geometry of Homogeneous Convex Cones
    These lectures will provide a comprehensive overview of information processing. We will start with information processing in early vision in static and geometric models of the primary visual cortex. Then, we will explore information processing in vision in dynamics. Finally, we gonna talk about the information geometry of Chentsov-Amari and homogeneous convex cones.

  • Frédéric Barbaresco (Thales Land and Air Systems, FranceSymplectic Foliation Structures of Information Geometry for Lie Groups Machine Learning
    We present a new symplectic model of Information Geometry  based on Jean-Marie Souriau's Lie Groups Thermodynamics. Souriau model was initially described in chapter IV “Statistical Mechanics” of his book “Structure of dynamical systems” published in 1969. This model gives a  purely geometric characterization of Entropy, which appears as an invariant Casimir function in coadjoint representation, characterized by Poisson cohomology. Souriau has proved that we can associate a symplectic manifold to coadjoint orbits of a Lie group by the KKS 2-form (Kirillov, Kostant, Souriau 2-form) in the affine case (affine model of coadjoint operator equivariance via Souriau's cocycle), that we have identified with Koszul-Fisher metric from Information Geometry. Souriau established the generalized Gibbs density covariant under the action of the Lie group. The dual space of the Lie algebra foliates into coadjoint orbits that are also the Entropy level sets that could be interpreted in the framework of Thermodynamics by the fact that dynamics on these symplectic leaves are non-dissipative, whereas transversal dynamics, given by Poisson transverse structure, are dissipative. We will finally introduce Gaussian distribution on the space of Symmetric Positive Definite (SPD) matrices, through Souriau's covariant Gibbs density by considering this space as the pure imaginary axis of the homogeneous Siegel upper half space where Sp(2n,R)/U(n) acts transitively. We will also consider Gibbs density for Siegel Disk where SU(n,n)/S(U(n)xU(n)) acts transitively. Gauss density of SPD matrices is then computed through Souriau's moment map and coadjoint orbits. Souriau’s Lie Groups Thermodynamics model will be further explored in European COST network CaLISTA and European HORIZON-MSCA project CaLIGOLA.
  • Noémie  Combe (Max Planck Institute for Mathematics in Sciences, Germany)
    Exploring Information Geometry: Recent Advances and Connections to Topological Field Theory
    With the rapid progress of machine learning, artificial intelligence and data sciences, the topic of information geometry is an important domain of research. We aim at introducing the topic of information geometry, as well as presenting some recent progress in this domain. Differential geometry and algebraic aspects shall be developed. The new tight relation between the information geometry and topological field theory will be discussed

CALL FOR CONTRIBUTIONS

The school will provide participants with an opportunity to interact with their colleagues and well-known researchers in the field.  Each participant could make a talk about recent research and get independent and constructive feedback on her/his current research and future research directions. Materials from the school and workshop will be published by Springer Nature. All contributions are subject to peer review.

REGISTRATION

To register, please, fill in the registration form.

The school fee 

Fee for virtual participation 450 EUR
Fee for participation on site 650 EUR

The fee for virtual participation includes admission to all lectures of the Summer School & Workshop Wisla 23, access to the materials, and a certificate for participation; covers technical issues; provides an opportunity to present research, and a possibility to publish a paper. The participation on-site also includes coffee breaks, lunches, and one conference dinner.

Financial Support
We expect that some support will be available. If you are requesting financial support, please complete the registration form and send us your CV as soon as possible.

Org. Committee
J. de Lucas, M. Roop, J.Szmit, R.Zawadzki, M.Ulan, M. Wojnowski
sn_logo_cmyk                            birkh_logo_2c12345

Mathematics-Driven Research seminar

cat_math

The world is constantly changing, and the use of technologies is rapidly growing. However, lots of challenges still remain unsolved. This is where fundamental mathematics enters the scene.  Mathematics is presented almost everywhere, and the efficiency of the industry highly depends on the mathematical background of the engineers and researchers working towards scientific and technological progress. The more technologically advanced are devices we use in our everyday life, the richer is the mathematics driving them.

Therefore, the Baltic Institute of Mathematics in cooperation with the Taras Shevchenko National University of Kyiv and the Institute of Mathematics of NAS of Ukraine are starting up a research seminar for students from the last two years of high school and first two years of the university, where we will discuss the current technologies and fundamental mathematics behind them. Every participant will be given an opportunity not only to get knowledge but also to give a try on doing research. Each meeting will be followed by a small research project.

To register, please, fill in the registration form

Next meeting: May 27, 13:30 CET
Topic: Mathematics, models and simulations
Previous topics have included but were not limited to cryptosystems, probability theory, neural networks, computer vision, algorithms and self-driving cars,  playing music using mathematics and programming.
Materials (available only for admitted participants) 
12345
frozen_bubble

Winter School & Workshop Wisla 22

Online
January 24 - February 6,  2022

The topic of the school:

Differential Geometry and its applications: fluid dynamics, dispersive systems, image processing, and beyond.

Type of activity Time  in CET
Virtual coffee break 16:00 - 16:30
Lecture 1 16:30 - 17:30
Virtual coffee break 17:30 - 18:00
Lecture 2 18:00 -19:00
Virtual coffee break 19:00 - 19:30
Talks by participants 19:30 - 20:00
Networking 20:00 - 21:00

January 24 - January 27: Lecture 1 by Valentin Lychagin, Lecture 2 by Peter J. Olver
January 28: Lecture 1 & Lecture 2 by Klas Modin
January 29: Lecture 1 & Lecture 2 by Boris Khesin
January 31: Lecture 1 by Klas Modin, Lecture 2 by Boris Khesin
February 1- February 3: Lecture 1 by Ian Roulstone, Lecture 2 by Volodya Roubtsov
Full program and details (available  only for admitted participants) 

ABSTRACTS

Boris Khesin (University of Toronto, Canada)
Hamiltonian Fluid Dynamics
The course outlines group-theoretic and Hamiltonian approaches to hydrodynamics. We start by describing the Eulerian dynamics of an ideal fluid and the Korteweg—de Vries equation of shallow water from the group-theoretic and geometric points of view. The Hamiltonian framework will allow us to visualize the geometry of Casimirs for the Euler equation and helicity of vector fields, as well as to recover the motion of point vortices, vortex filaments and membranes.


Valentin Lychagin  (University of Tromsø, Norway)
Continuum Mechanics of Media with Inner Structure
Short description:
Continuum mechanics on Riemannian manifolds
-Thermodynamics of Newtonian media.
-Conservation laws, Navier-Stokes and Euler equations.
Continuum mechanics of media with inner structures
Continuum mechanics of molecular media


Klas Modin (Chalmers University of Technology & University of Gothenburg, Sweden)
Introduction to Geometric Hydrodynamics
In three lectures I trace the work of three legends of mathematics and mechanics: Euler, Poincaré, and Arnold. This leads up to the aim of the lectures: to explain Arnold’s discovery from 1966 that solutions to Euler’s equations for the motion of an incompressible fluid correspond to geodesics on the infinite-dimensional Riemannian manifold of volume preserving diffeomorphisms. In many ways, this discovery is the foundation for the field of geometric hydrodynamics, which today encompasses much more than just Euler’s equations, with deep connections to many other fields such as optimal transport, shape analysis, and information theory.


Peter J. Olver  (University of Minnesota, USA)
Fractalization and Quantization in Dispersive Systems
These talks will survey recent results on linear and nonlinear dispersive wave equations on periodic domains.  The Talbot effect, also known as dispersive quantization. The evolution, through spatially periodic linear dispersion, of rough initial data produces fractal, non-differentiable profiles at irrational times and, for asymptotically polynomial dispersion relations, quantized structures at rational times.  Such phenomena have been observed in dispersive wave models, optics, and quantum mechanics, and lead to intriguing connections with exponential sums arising in number theory.   Ramifications and recent progress on the analysis, numerics, and extensions to nonlinear wave models, both integrable and non-integrable, will be presented.  Related results for the Fermi-Pasta-Ulam-Tsingou problem of the dynamics of nonlinear mass-spring chains and the Lamb model for radiation damping of a vibrating body in an energy conducting medium will also be discussed.

Symmetry, invariance, and equivalence in image processing
Symmetry recognition is fundamental in human vision and thus also plays a key role in image processing algorithms.  These talks will survey old and new mathematical perspectives on symmetry, invariance, and equivalence based on transformation groups and groupoids.  Cartan's solution to the equivalence and symmetry problem for submanifolds relies on the associated geometric invariants, through what is now known as the differential invariant signature.  Applications arise in art, computer vision, medicine, geometry, and beyond, including automated assembly of broken objects: jigsaw puzzles, egg shells, broken bones, and lithics (stone age tools).


Volodya Roubtsov  (University of Angers, France)
Introduction to Hamiltonian Mechanics
I shall give a short account of Hamiltonian methods of classical mechanics. After a minimal reminder from symplectic geometry, I shall concentrate on explicit examples of mechanical systems and shall demonstrate main features of the Hamiltonian approach and Liouville integrability: a construction of action-angle variables for the chosen examples. My lectures do not contain new results and have a fully methodological flavor.


Ian Roulstone (University of Surrey, UK)
Monge–Ampère Geometry and the Navier–Stokes Equations
In this series of three lectures, we shall apply ideas from Monge–Ampère  geometry to the partial differential equations governing incompressible fluid flow in two and three spatial dimensions. Despite the apparent randomness of turbulent flows, vortices play a key role in determining the structure and evolution of the flow. We shall show how almost-complex structures in four and six dimensions are naturally associated with regimes in which vorticity dominates over strain and, furthermore, how such flows are associated with Riemannian metrics of positive scalar curvature. In turn, these insights suggest a route to obtaining topological information about vortex structures.

#################################################################

REGISTRATION

To register, please, fill in the registration form.

The school fee is 125 EUR
The fee includes online participation,  lectures, and covers technical issues.

Financial Support
We expect that some support will be available to fund students and young researchers.
If you are requesting financial support, please complete the registration form and send your CV as soon as possible.

Org. Committee
R. Kycia, J. de Lucas, M. Roop, J.Szmit, R.Zawadzki, M.Ulan, M. Wojnowski
#################################################################

Proceedings of Winter School & Workshop Wisla 22

The school will provide young researchers with an opportunity to interact with their colleagues and well-known researchers in the field:
- each participant could make a talk about recent research or present a poster
- each participant will get independent and constructive feedback on her/his current research and future research directions
- a decision about including participantwork to the book will be made based on experts feedback
- each participant will also be given an opportunity to improve her/his work during the school

Materials of the school and workshop will be published by Springer Nature. All contributions are subject to peer review.

Lecture notes from previous editions:

Nonlinear PDEs, Their Geometry, and Applications. Proceedings of the Wisła 18 Summer School

Differential Geometry, Differential Equations, and Mathematical Physics. The Wisła 19 Summer School

Proceedings of Winter School & Workshop Wisla 21 and Summer School & Workshop Wisla 20 are in progress
sn_logo_cmyk                            birkh_logo_2c12345

pendulum

An invitation to symplectic geometry and classical mechanics.

Online
May 18, 2021 11:00 - 12:00 CET

Speaker:
Javier de Lucas Araujo (Assistant professor at the Department of Mathematical Methods in Physics of the Faculty of Physics of the University of Warsaw)

Abstract:
In this talk, I will introduce some notions and results on symplectic geometry and their applications to classical mechanics. Although omitting technical proofs, I will explain the main ideas and results about this theory and its applications. In detail, I will comment on the definition of symplectic manifolds, Hamiltonian vector fields and functions, Poisson brackets, momentum maps, and the Marsden-Weinstein theorem. More physically, I will explain how these structures explain the Hamilton equations of a classical mechanical system and how they are used to study systems with symmetries.

Registration:
To register, please, fill in the registration form.

Organizers:
- Baltic Institute of Mathematics (Warsaw, Poland, http://www.baltinmat.com)
- Institute of Mathematics of NAS of Ukraine (Kyiv, Ukraine, http://www.imath.kiev.ua)
12345

Screenshot 2021-04-14 at 21.24.42

From Goals to Actions - How to EdTech

May 17 - 28, 2021
Online

Baltic Institute of Mathematics in cooperation with the Dnipro Academy of Continuous Education will organize a seminar of 6 mini-courses:

- Digital transformation in education
- AR, MR, and VR technologies for learning
- Gamification of learning
- Blended and flipped learning
- Team-based and collaborative learning
- Design thinking: creativity, innovation, and empathy

Screenshot 2021-06-13 at 21.31.03
As a part of each mini-course, we will discuss the growing role of technologies, challenges, and opportunities for their implementation in the educational process. We will touch on both theoretical and practical aspects.

Registration is closed
More Info & Slides (Password Available Upon Request)

Organizers:
Baltic Institute of Mathematics
Dnipro Academy of Continuous Education

12345

snowflake

Symplectic Methods and Dynamical Systems

Online
January 15, 2021 11:00 - 12:00 CET

Speaker:
Javier de Lucas Araujo (Assistant professor at the Department of Mathematical Methods in Physics of the Faculty of Physics of the University of Warsaw)

Abstract:
This talk provides a brief introduction to symplectic geometry and its applications to dynamical systems. In particular, I will explain the most fundamental notions on symplectic geometry such as the Darboux theorem, the canonical symplectic structure on the cotangent bundle, and the main properties of the so-called Hamiltonian vector fields.  Concerning the applications of symplectic geometry to dynamical systems, the Liouville theorem, the Gromov’s non-squeezing theorem, and the main properties of the referred to as integrable Hamiltonian systems will be analysed.

Slides & Recording (Password Available Upon Request)

Organizers:
- Baltic Institute of Mathematics (Warsaw, Poland, http://www.baltinmat.com)
- Institute of Mathematics of NAS of Ukraine (Kyiv, Ukraine, http://www.imath.kiev.ua)
12345

winterWisla

Winter School & Workshop Wisla 20-21 [ONLINE!]

Online
January 25 - February 5, 2021

The topic of the school:
Groups, invariants, integrals, and moving frames.

The goal of the school is to present recent results in differential geometry related to nonlinear PDEs, mathematical physics, and moving frames.

LECTURES

January 25 - January 29:

Valentin Lychagin  (University of Tromsø, Norway)

Differential contra algebraic invariants.

Eivind Schneider  (University of Hradec Králové, Czech Republic)
Differential invariants of Lie pseudogroups.

February 1 - February 5:

Peter J. Olver  (University of Minnesota, USA)
The Theory and Applications of Moving Frames.

Volodya Roubtsov  (University of Angers, France)
Poisson algebras.

The lectures will focus on Lie groups and pseudogroups which play an important role in these fields, and we will discuss different ways of studying their orbit spaces. Two main topics are Poisson algebras and differential invariants. The theory will be illustrated by examples from algebraic and differential geometry, fluid dynamics, and thermodynamics.

The third main topic is moving frames. The lectures will center on the basic theory, computational techniques, and applications of the new, equivariant approach to the method of moving frames, concentrating one the case of finite-dimensional Lie group actions.  The methods will be illustrated by examples chosen from an ever-expanding range of applications, including differential geometry, partial differential equations, calculus of variations, geometric flows, integrable systems, classical invariant theory, numerical analysis, and image processing including the automatic reassembly of broken objects: jigsaw puzzles, egg shells, and bone fragments.

The school will provide young researchers with an opportunity to interact with their colleagues and well-known researchers in the field. Selected materials of the school and workshop will be published by Springer Nature.

PRESENTATIONS

Singularities in Euler flows: multivalued solutions, shock waves and phase transitions by Mikhail Roop (January 25  19:30 - 20:00) Abstract:  We analyze various types of critical phenomena in one-dimensional gas flows described by Euler equations. We give a geometrical interpretation of thermodynamics with a special emphasis on phase transitions. We use ideas from geometrical theory of PDEs (symmetries, differential constraints) to find solutions to the Euler system. Solutions obtained are multivalued, have singularities of projection to the plane of independent variables. We analyze the propagation of the shock wave front along with phase transitions.

Vector Distribution and Applications by Ly Hong Hai (January 26 19:30 - 20:00) Abstract: The present theory of variational ODE is based on the theory of distributions of generally non-constant rank, and on the calculus of variations on fibered manifolds. The aim of my talk is to summarize the main concepts and results related to Vector distributions on manifolds, Integral mappings of distribution, Completely integrable distributions, Frobenius theorem, Vifljancev theorem, Foliation of the manifold, Foliation associated with the completely integrable distribution as well as some vivid example to illustrate this theory more clearly. In addition, I will introduce Exterior Differential System, basic examples and applications of scalar first order PDE, Lie Groups.

Invariant difference Euler-Lagrange equations by Lewis Charles White (January 27 19:30 - 20:00) Abstract: In this talk I will introduce moving frames for the difference calculus of variations. I will show how (difference) moving frames can be used to calculate the difference Euler-Lagrange equations directly in terms of the invariants. A running example will be used throughout to illustrate this theory more clearly.

Monge-Ampère Operators and Variational Problems by Radek Suchánek (January 28 19:30 - 20:00) Abstract: We will be focused on Monge-Ampère operators and how they are related with (classical) variational problems. The contact structure that naturally lives on the first jet space of real-valued functions yields a symplectic structure on the corresponding Cartan distribution. In this context, I will define the Euler operator and demonstrate how this operator is connected with the (non)existence of a first-order Lagrangian for a given PDE. The main example will be the second heavenly equation of Plebański, coming from the (anti)-self-dual gravity in dim=4. At the end of the talk, we will see how the above can be connected with the multisymplectic geometry.

Homotopy types of striped surfaces and applications by Aleksei Nikitchenko (January 29 19:30 - 20:00) Abstract: Striped surface is a surface obtained by gluing open stripes with boundary intervals along some of those intervals. Every such surface is a non-compact two-dimensional manifold which can be non-connected, non-orientable and each connected component of its boundary is an open interval. To each striped surface one can associate 1-dimensional CW-complex (topological graph), which encodes combinatorial information about gluing of stripes. This graph can have loops and multiple edges. We prove that there is homotopy equivalence between a striped surface and its graph. The proof is based on one of generalization of Seifert's–van Kampen's theorem for grupoids. One of consequences is that homotopy type of corresponding graph is determined only by the striped surface itself and does not depend on a decomposition this surface into stripes (because surface can have many distinct decompositions into stripes). Each striped surface admits a certain canonical one-dimensional foliation. There is a result by W. Kaplan (1942) that for every stripe decomposition of a plane there is a pseudo-harmonic function on the plane without singular points such that its foliation into connected components of level sets coincide with the canonical foliation of the decomposition into stripes. It also follows that the group of automorphisms of the graph of the stripes decomposition encodes certain combinatorial symmetries of the above pseudo-harmonic functions. So results that we obtain might be useful in the theory of pseudo-harmonic functions and in studying symmetries of PDE.

Chern classes in the context of Hamiltonian monodromy by Nikolay Martynchuk (January 16:00 - 16:30) Abstract: In this talk, we will show how Chern classes can be used to prove the non-existence of global action-angle coordinates in integrable Hamiltonian systems.  In particular, we will show that in systems with a global circle action, Chern classes essentially determine the Hamiltonian monodromy. The talk is based on joint works with Prof. K. Efstathiou (Duke Kunshan University).

Symplectomorphisms of surfaces preserving a Morse function by Sergiy Maksymenko (January 30 16:30 - 17:00) Abstract: Let M be a compact orientable surface equipped with a symplectic differential 2-form w. Since its dimension equals to the dimension of M, this form w is also a volume form and so for every open subset U of M one can define a w-area Aw(U) of U by integrating w over U. Furthermore, given a smooth function f on M one can define the so-called Hamiltonian flow H of f with respect to w. This flow is a family of diffeomorphisms Ht, (t is any real number), preserving the function f and the form w in a natural sense:

  • f(H_t(x))=f(x) for all x from M,
  • Ht*w = w, which means that Ht preserves w-area of each open subset U of M, i.e. Aw(Ht(U)) = Aw(U).

Let S(f,w) be the group of all diffeomorphisms h of M preserving f and w in the above sense, and Sid(f,w) be its itentity path component, consisting of diffeomorphisms isotopic to the identity map of M in S(f,w). Let also Z(f,w) be the abelian group of all smooth functions on M which take constant values along orbits of H.Suppose f is a Morse function.We construct a homomorphism of groups q: Z(f,w) → Sid(f,w) being also a homeomorphism whenever f has at least one saddle critical point or an infinite cyclic covering otherwise. This, in particular, implies that Sid(f,w) is an abelian topological group being either contractible or homotopy equivalent ot the circle.

Cartan Connection for Schrodinger equation by Radosław Kycia (January 30 17:00 - 17:30) Abstract:  I will present the Schrodinger equation's factorization into the (elliptic) background and (evolutionary) part moving on this background. It is a slightly generalized picture than in the pilot-wave theory of Quantum Mechanics. Moreover, if the Schrodinger equation is interpreted as a continuity equation, then the Cartan connection appearing in this equation describes the background. Therefore, the splitting into equation and the background can be interpreted geometrically. The vital role in this approach plays the scaling/dilation group of the wave function. This corresponds to the original idea of Weyl that leads to the concept of the gauge principle.

Foliated Lie systems: Theory and applications by Javier de Lucas Araujo (January 30  18:00 - 18: 30) Abstract: An $\mathcal{F}$-foliated Lie system is a non-autonomous system of first-order ordinary differential equations on a manifold N whose main properties are that its particular solutions are contained in the leaves of a foliation $\mathcal{F}$ of N and all its particular solutions within any leaf of $\mathcal{F}$ can be written as a certain function, a so-called foliated superposition rule, of a family of particular solutions of the system within the same leaf and several parameters. I will analyse the properties of $\mathcal{F}$-foliated Lie systems and I will illustrate their properties by studying Lax pairs and a class of t-dependent Hamiltonian systems. Finally, I shall study how $\mathcal{F}$-foliated Lie systems can be studied through geometric structures. In particular, a class of $\mathcal{F}$-foliated Lie systems on Lie algebras will be studied via Poisson structures induced by r-matrices.

Poisson Structures in Diole algebras by Jacob Kryczka (January 30  18:30 - 19:00) Abstract: We summarize a new algebraic formalism for studying calculus in vector bundles. This is achieved by studying various functors of differential calculus over a novel graded commutative algebra called Diole algebras. In doing so, analogues of differential forms as skew-symmetric multi-linear functions on Der-operators arise, leading to so-called Der-complexes and natural generalizations of Atiyah sequences of a vector bundle are found.

A geometric framework to compare classical field theories by Lukas Barth (January 30 19:30 - 20:00) Abstract: A rather philosophical question is how to compare two classical physical theories. However, this question has practical implications because a comparison might enable us to transfer ideas and methods from one area to another. Since classical field theories are to a large extent described by their underlying PDEs, a mathematically more precise question is how to compare differential equations in general. In this talk I'll define a notion of "shared structure" of two systems of (possibly non-linear) PDEs by introducing a suitable notion of intersection of such systems. More concretely, the PDEs will be comprehended as submanifolds of jet spaces and a correspondence between those jet spaces then gives rise to a geometric intersection. It will be argued that if this intersection is a formally integrable manifold, then it can be justified to say that the two theories share structure. Using the notion of shared structure, one can also define a sort of equivalence of theories and equivalence of such theories up to symmetries. This will be illustrated with some examples of subtheories of electrodynamics.

Classification of coadjoint orbits for symplectomorphism groups of surfaces by Ilia Kirillov (January 30 20:00 - 20:30) Abstract: Hydrodynamical Euler's equation describes the motion of an ideal incompressible fluid on a Riemannian manifold. In this talk, I will start by explaining how the kinematics of Euler's equation is related to the coadjoint orbits of the group of volume-preserving diffeomorphisms. In dimension two the volume-preserving diffeomorphisms coincide with the symplectomorphisms. The classification of generic coadjoint orbits for symplectomorphism groups of closed surfaces was obtained by Izosimov, Khesin, and Mousavi in 2016. I will explain how to generalize this result to the case of symplectic surfaces with boundary.

On invariant operations of a manifold with a linear connection and an orientation by Raúl Martínez-Bohórquez (February 1 16:30 - 17:00) Abstract: The theory of natural operations in differential geometry has a long history. Model results in this theory produced explicit descriptions of all natural operations of a certaind kind; that way, there appeared characterisations for many various differential operations, such as those for the exterior dierential, the Lie bracket or the characteristic classes in Riemannian geometry. This talk is based upon a follow-up on a previous work (On the uniqueness of the torsion and curvature operators, by Gordillo-Merino, Martínez-Bohórquez and Navarro, RACSAM 2020). There, an important result by J. Slovak was reformulated in the language of sheaves and ringed spaces, which allowed us to give characterisations of the torsion tensor of linear connections as well as another of the curvature tensor of symmetric linear connections, much in the spirit of the classical results mentioned above. The nice properties of ringed spaces allows us to export this machinery to the setting of manifolds endowed with a linear connection and an orientation, in order to improve the aforementioned characterisations of the torsion and curvature tensors, to describe the space of natural forms and to give a result on the existence of field equations on this environment. This is a joint work with Adrián Gordillo-Merino and José Navarro.

First integrals for SL(2,R) invariant equations with Maple  by Concepción Muriel Patino (February 1 17:00 - 17:30) Abstract:  In this talk we show how to construct first integrals for a SL(2,R)-invariant ordinary differential equation through algebraic operations involving the symmetry generators of  the underlying symmetry algebra sl(2,R),  and without any kind of integration.  For second-order equations, we provide an explicit expression for two non-constant first integrals, although they could be functionally dependent. For second-order linearizable equations we prove that there are always symmetry generators of sl(2,R) that produce functionally independent first integrals. There are two special cases of non-linearizable equations for which the obtained first integrals become functionally dependent. In this case, a second functionally independent first integral can be obtained by a single quadrature.  These results are extended for SL(2,R)-invariant equations of arbitrary order,  provided that a solvable structure for an integrable distribution generated by the differential operator associated to the equation and one of the prolonged symmetry generators of sl(2,R) is known.  Several examples illustrate the procedures, showing how Maple can help us to perform the computations.

The time-dependent energy-momentum method by Bartosz Maciej Zawora (February 2 16:30 - 17:00) Abstract: In my talk, I will present a new generalisation of the energy-momentum method, designed for studying the stability of a time-dependent Hamiltonian $H(t)$ on a symplectic manifold $(P,\omega)$ with a certain class of Lie group action on $P$ leaving $H(t)$ and the symplectic form $\omega$ invariant. First, I shall introduce some fundamental notions from symplectic geometry and Lyapunov stability such as momentum maps and relative equilibrium points, extending classical results on linear spaces to a time-dependent setting on manifolds. More particularly, I will briefly discuss how the Marsden-Weinstein theorem allows for reducing $H(t)$ on $P$ to a time-dependent Hamiltonian system $K(t)$ on a quotient space of a submanifold $S$ of $P$ induced by a momentum map related to the Lie group action on $P$. I shall comment on the properties of the equilibrium points of $K(t)$ and their relation to the behaviour of $H(t)$ at points of $S$ projecting to them. This will lead to introducing a new relative equilibrium point notion for time-dependent Hamiltonian systems. Then, I will explain some conditions determining the stability points of $K(t)$ and several other related results.

Generalized solvable structures associated to symmetry algebras isomorphic to gl(2,R) \semidirectsum R by Adrián Ruiz Serván (February 2 17:00 - 17:30) Abstract:  Symmetry Lie algebras that are isomorphic to $gl(2,R) \semidirectsum R$ are nonsolvable, therefore the standard methods of integration by quadratures cannot be applied to solve ordinary differential equations that are invariant under the action of $GL(2,R) \semidirectsum R$. In this work it is proved the existence of a generalized solvable structure for the vector field associated with a fifth-order equation admitting a Lie symmetry algebra isomorphic to $gl(2,R) \semidirectsum R$. As a consequence, the integrability of the given equation splits into two integration processes of second and third order, respectively. On one hand, two functionally independent first integrals of the equation are computed by quadratures alone. On the other hand, the third order integration process refers to a third-order equation that admits a Lie symmetry algebra isomorphic to $sl(2;R)$, which is also nonsolvable. In this sense, the initial nonsolvability problem is reduced to another nonsolvabilty problem of lower dimension. Previous results regarding the integrability of $SL(2;R$)-invariant third-order equations allow us to obtain the general solution to the original equation in implicit form and expressed in terms of a fundamental set of solutions to a two-parameter family of Schrödinger-type equations. It is also discussed the possible advantages of the approach presented with respect to the standard Lie reduction method. An example is also included with the aim of showing the eectiveness of the method. Remarkably, the Lie symmetry algebra of the considered example is ve-dimensional and isomorphic to $gl(2;R) \semidirectsum R$, which means that the equation does not present extra Lie point symmetries.

Double field theory in supergravity and deformations of supergravity by Stanislav Hronek (February 3 19:30 - 20:00) Abstract: In this presentation, I will review the formalism of double field theory, which is an O(D,D) covariant formulation of supergravity which makes the T-duality symmetry of string theory manifest. It has been shown that this formulation is valid to the first order in α′ (string perturbative expansion). My work in the last year has been connected to using this formalism for studying two aspects of supergravity. The first was to study a deformation of supergravity called the Yang-Baxter deformation which is closely connected to integrable models. It turns out this deformation can be written very naturally in this double field theory formalism. The second was to analyze O(D,D) invariants in higher orders of α′. The goal was to see whether the double field theory formalism can capture the full string α′ expansion. The answer seems to be no since we found an obstruction in the order α′ cubed.

Symmetries of the 2-dimensional Schrödinger-Pauli equation for neutral particles by Serhii Koval (February 4 19:30 - 20:00) Abstract: It is well-known, that the Schrödinger equation (SE) is a very important base for the application of various symmetry approaches to mathematical physics. The symmetry group of SE was established by Sophus Lie a long time ago but in the form of a linear heat equation (but SE is nothing but its complex form). Pauli equation is a partial case of the SE with matrix potentials, which describes the interaction between particles with spin and external magnetic field. By using the algebraic approach the Lie symmetries of 2-dimensional Pauli equation with matrix potentials are classified. Ten inequivalent equations and symmetry groups are specified.

Hamiltonian formalism for quasilinear first order systems through homogeneous operators by Pierandrea Vergallo (February 5 19:30 - 20:00) Abstract:  Hamiltonian formalism plays an important role in the theory of Integrable systems. It is a well known fact that Hamiltonian operators map conserved quantities into symmetries of the system. Moreover, finding two compatible Hamiltonian structures of a given system of PDEs allows to generate an infinite number of commuting symmetries (and conserved quantities in involution). This property guarantees the integrability. In general, it is not easy to understand when a given system of PDEs can be written by using Hamiltonian formulations. However, necessary conditions can be presented for a quasilinear system of first order to admit Hamiltonian formulation through a particular class of operators (called homogeneous Hamiltonian operators). In this talk, conditions on rst order and second order operators will be shown with examples and geometric properties.

VIRTUAL SETTING

We use two platforms; Zoom and Discord. All presentations take place on Zoom, and all social interactions take place on Discord. Breaks  take place in voice channels on Discord where you can interact with other participants.

The school fee is 100 EUR.
The fee includes online participation,  lectures, and covers technical issues.
Registration is closed, since the event already took place.

Financial Support
We expect that some support will be available to fund students and other young researchers. If you are requesting financial support, please complete the registration form and send a pdf of your CV as soon as possible.

Org. Committee
R. Kycia, J. de Lucas, J.Szmit, R.Zawadzki, M.Ulan, M. Wojnowski

#################################################################
Proceedings of Winter School & Workshop Wisla 21
and
 Summer School & Workshop Wisla 20

Materials of the school and workshop will be published by Springer Nature. The school will provide young researchers with an opportunity to interact with their colleagues and well-known researchers in the field:
- each participant could make a talk about recent research or present a poster
- each participant will get independent and constructive feedback on her/his current research and future research directions
- a decision about including participantwork to the book will be made based on experts feedback
- each participant will also be given an opportunity to improve her/his work during the school
#######################################################################
Lecture notes from previous editions are available at the following links:

Nonlinear PDEs, Their Geometry, and Applications. Proceedings of the Wisła 18 Summer School

Differential Geometry, Differential Equations, and Mathematical Physics. The Wisła 19 Summer School
sn_logo_cmyk                            birkh_logo_2c12345

education

Summer Camp Green Futurum 2020

Summer, mountains, math! What can be better?

Do you enjoy math, physics,  and programming?
Join the international children math and physics community BIM.  We invite you to have two unforgettable weeks (21 August - 4 September 2020) in a summer math camp for students of 1-8 grades which takes place in a small Polish town at the foot of the mountains. We also invite students of 1-4 grades (ages 6-11) to our school together with parents.

The most interesting problems and math puzzles as well as twisted origami are waiting ahead. Every one of you can try being a scientist, an engineer or even a film director.

We will show where and how math appears in real life. Are you with us?
This year edition will be focused on a connection between Mathematics and Sustainability.

For more details on Futurum STREAM Camps , please follow the link below:
http://baltinmat.com/events/event/futurum-stream-camp/12345

GAADE Conference

Conference “Geometry, Algebra and Analysis of Differential Equations" will be held in conjunction with the Summer School & Workshop Wisla 20.

Wisła, Poland
August 14 – August 16, 2020

The ARRIVAL DAY is August 13.
The DEPARTURE DAY is August 16.

Conference fee is 750 EUR
Deadline for registration and payment is June 1, 2020.

The fee includes meals and accommodation in a single room.
Interested participants are requested to send an e-mail to office@baltinmat.eu or fill the registration form. Your request will be considered by the Organizing Committee.
Selected materials of the conference will be published by Springer Nature.

Organising Committee:
V. Lychagin, V. Rubtsov, J. Szmit, J. Slovák, M. Ulan, R.Zawadzki

             sn_logo_cmyk      birkh_logo_2c

12345

 

P1150024

Summer School & Workshop Wisla 20

Groups, invariants, integrals and their applications to fluid dynamics and thermodynamics
EMS SUMMER SCHOOL IN APPLIED MATHEMATICS (ESSAM)
Wisła, Poland
August 17 – August 27, 2020

Due to the COVID-19 pandemics, the Wisla Summer School  & Workshop will be organized in a hybrid model: in-person or remote online participation.

The topic of the forthcoming school:
Groups, invariants, and integrals.

The goal of the forthcoming school is to present recent results in differential geometry related to nonlinear PDEs and mathematical physics. The lectures will focus on Lie groups and pseudogroups which play an important role in these fields, and we will discuss different ways of studying their orbit spaces. Two main topics are Poisson algebras and differential invariants. The theory will be illustrated by examples from algebraic and differential geometry, fluid dynamics, and thermodynamics.

The school will provide young researchers with an opportunity to interact with their colleagues and well-known researchers in the field. Selected materials of the school and workshop will be published by Springer Nature.

The speakers will be:

Lychagin Valentin (University of Tromsø, Norway)
Differential contra algebraic invariants. 

Rubtsov Volodya (University of Angers, France)
Poisson algebras.

Schneider Eivind (University of Hradec Králové, Czech Republic)
Differential invariants of Lie pseudogroups.

The ARRIVAL DAY is August 16.

The DEPARTURE DAY is August 27.

School fee for in-person participation is 450 EUR for Early bird registration (until July 15, 2020), 
550 EUR for registration after July 15, 2020 until August 1, 2020.
The school fee for remote online participation is 100 EUR.

The fee for in-person includes meals, accommodation (2-3 beds rooms with private bathroom), and lectures. Accommodation in a single room costs an additional 100 EUR.
The fee for remote online participation includes lectures and covers technical issues.

To apply please send an e-mail to office@baltinmat.eu or fill the registration form.
Your request will be considered by the Organizing Committee. 

Financial Support
We expect that some support will be available to fund students and other young researchers. If you are requesting financial support, please complete the registration form and send a pdf of your CV as soon as possible.

Org. Committee:
R. Kycia, J. de Lucas, E. Schneider, J.Szmit, R.Zawadzki, M.Ulan, M. Wojnowski

#######################################################################
Proceedings of Summer School & Workshop Wisla 20
Materials of the school and workshop will be published by Springer Nature.
The school will provide young researchers with an opportunity to interact with their colleagues and well-known researchers in the field:
- each participant could make a talk about recent research or present a poster
- each participant will get independent and constructive feedback on her/his current research and future research directions
- a decision about including participantwork to the book will be made based on experts feedback
- each participant will also be given an opportunity to improve her/his work during the school

emsllogo_no background

sn_logo_cmyk      birkh_logo_2c

12345